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A formal series solution of the second Fick equation with a concentration-dependent diffusion coefficient is obtained for 
one-dimensional free diffusion in two-component systems by making use of the method of successive approximations. 
The diffusion coefficient, D(C), is_represented as a function of solute concentration, C, in the form of a Taylor series expanded 
about the mean concentration, C, of the two starting solutions. After combining the solution for the concentration dis
tribution with an expression relating refractive index to concentration, equations for the reduced height-area ratio, DA, 
and reduced second moment, S W of the_refractive index gradient curves are obtained. I t is shown that £>A and Shm vary 
linearly with (AC)2 for a given value of C, where AC is the concentration difference across the initial boundary. The inter
cept of either straight line a t AC = 0 gives the value of D at concentration C, while the slopes of both straight lines are con
nected, in a somewhat complicated fashion, with the concentration dependence of D and of the refractive index. On the 
basis of these relations two methods are presented for determining the diffusion coefficient versus concentration relationship 
from data for SDA and 332m. In order to test one of the theoretical relations obtained, measurements were performed with the 
»-butanol-water system using the Gouy diffusiometer. In accordance with theory, SDA at a given value, of C was found 
to vary linearly with (AC)2 over the range of AC studied. I t is shown that the slope of this straight line is consistent with 
the value computed from the theoretical equation using data reported by Lyons and Sandquist for the same system. 

Several of the precise methods for studying free 
diffusion in liquids depend on measurements of the 
refractive index or the refractive index gradient 
distribution in the diffusion cell as a function of 
time. To obtain accurate values of the diffusion 
coefficient from such measurements, it is necessary 
to consider the effects of (1) the concentration de
pendence of the diffusion coefficient,2-8 and (2) 
deviations from linearity in the relation of the re
fractive index to solute concentration. (It is here 
assumed that there is no volume change on mixing.) 
The first-order effect of these complicating factors is 
to skew the refractive index gradient curve from 
the Gaussian shape, but it will be seen below that 
second-order symmetrical deviations are also pro
duced. As pointed out by Longsworth,9 the pos
sibility exists that the two sources of skewness, (1) 
and (2), may partially compensate each other to 
produce a nearly Gaussian refractive index gradient 
curve. With w-butanol in water, however, markedly 
skew boundaries are observed because the two ef
fects act in the same direction. Longsworth9 and 
Creeth10 studied boundary skewness with this system 
using the Rayleigh fringe method, while Lyons and 
Sandquist11 used the Gouy method to obtain data 
over a wide range of concentrations and reported 
two experiments which indicate that the reduced 
height-area ratio at a given mean concentration 
depends on the concentration difference, AC, be
tween the initial solutions. 

The main purpose of this paper is to present a 
general theoretical basis for interpreting free dif
fusion data from systems of this kind, thereby pro
viding reliable methods for determining diffusion 
coefficients from data obtained with optical diffusi-
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ometers. Equations for the reduced height-area 
ratio, the reduced second moment and the max
imum height (and its position) of the refractive in
dex gradient curve are derived through terms of or
der (AC)2; one of these relations is tested using 
Gouy diffusiometer data for the w-butanol-water 
system at 25°. However, because no method is 
available for obtaining reduced second moments 
from Gouy diffusiometer data for skewed refractive 
index gradient curves, no test could be made of the 
relation between the reduced second moment and 
(AC)2. I t is hoped that other apparatus, such as 
the Rayleigh fringe diffusiometer, will be employed 
to test this relation. 

Theory 
Basic Equations.—We consider a one-dimensional 

free diffusion experiment in a rectangular cell. 
At the start of the experiment, a sharp boundary is 
formed between two solutions of a single and homo
geneous solute, which are placed above and below 
the position x = 0. Taking the x-axis downward, 
and assuming that there is no volume change on 
mixing, the diffusion equation takes the form 

pc , A (D *c\ (1) 

where C is the concentration of the solute ex
pressed as mass or moles per unit volume of solu
tion, t is the time and D is the diffusion coefficient. 
The initial condition of the experiment is repre
sented mathematically by 

C = CA (t = 0, - co < x < 0) 
C = C8 (t = 0, 0 < * < oo) (2) 

In practice, it is necessary to place the less dense 
solution above the more dense one so that gravita
tional stability will be maintained during the ex
periment. Hence, for most solutes CB is larger 
than CA- In addition to initial condition 2, the fol
lowing boundary condition must be satisfied. 

C-* CA ( O 0, *—>- - co) 
C-* CB ( O 0,X > co) (3) 

In the present study, it is assumed that D is a 
function of concentration C only and can be repre-



1360 Louis J. COSTING AND HIROSHI FUJITA Vol. 79 

seated by a_Taylor expansion about the mean con
centration C = (CA + C B ) / 2 in the form12 

D(C) = D(C)[ I + A 1 ( C - C) + HC- C)2 + 
H C - C)* + ..] (4) 

Here D(C) is the value of D at C = C and the co
efficients, &i, &2, etc., stand for 

ki - L D(C) d c j c = c' h = 
1 dAD~| 

2! LZ)(C) dC2Jc = c' etc. 

(5) 

It should be noted that these coefficients in the ex
pansion of D(C) are functions of C. 

Introduction of equation 4 and the reduced con
centration, 4>, defined by 

0 = 2(C - C)/AC (6) 

wherein AC = CB — CA, changes equation 1 to 
c>0 = d 

dt dx ( _ 

d0/ 

dx\ 

J£(C)[l 

(7) 

Conditions 2 and 3 become, respectively 
• - 1 (t = 0 , - CO < X < 0) 

= 1 (/ = 0, 0 < X < co) 
(8) 

and 
<j> — > • - 1 (t > 0, * — > • - co) (9) 
0 >- 1 (/ > 0, X > co) 

As is well known,13 a partial differential equation of 
the form of 7 can be reduced to an ordinary differ
ential equation by introducing a new variable 

z = x/(2V DTCJt) (10) 
Thus equation 7 becomes 

'[i.^(f)« + fc(f)V + 

- ( ¥ ) " • • + • • • ] £ ! + - " * 

d_ 
dz ) 

dz 
= 0 (11) 

and conditions S and 9 are reduced to a single set of 
conditions 

<p • 

0 -
- 1 ( s • 0 (12) 

1 (Z >- co) 

Solution for the Concentration Distribution by 
the Method of Successive Approximations.— 
Equation 11 subject to condition 12 cannot be 
integrated analytically in closed form because of its 
non-linearity. However, a formal series solution 
may be obtained by making use of the method of 
successive approximations6'7'14'16 if the magnitude 
of AC is sufficiently small that the desired solution 
for 4> may be written as a series in AC 
0 = 0o + (A0/2)01 + (AC/2)202 + (AC/2)'03 + . . . 

(13) 

(12) The function D(C) is expanded about C instead of either CA 
or C = 0 to facilitate investigation of the maximum refractive index 
gradient and its position. It is noted that the subsequent solution for 
the concentration gradient distribution is more general tiian those 
given in refs. 6 and 7 where the D versus C relation was limited to the 
linear case. 
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Here each 4>t (i = 0 ,1 , 2, etc.) is a function of z to 
be determined from equation 11 and condition 12. 

Introducing equation 13 into equation 11, equat
ing the coefficients of (AC/2)°, (AC/2)1, (AC/2)-, 
etc., to zero, writing 

00 = </'0 
0i = £1^1 

02 = &12^2 + k-llpl 
03 = kl'^i + klh4>l + kit* 

(14) 

(15) 

(16) 

(17) 

and remembering that ki, k2, etc., are independent 
so that their coefficients may be equated to zero, we 
have 

4!£° + 2z ^ 0 = 0 
dz2 dz 

dz2 

dV: 
dz2 

d 2 ^ 

^ " " dz 

d^2 

1 d2 

2 d ? W " 

2 2 "dl = - dz* { M l ) 

d^3 __ I d 2 

dz2 +2*~dz ~ - 3 dz2 M 

(18) 

(19) 

(20) 

(21) 

d2^. 4 4- o„ 1^L* 
dz2 -1" dz 

^ 2 [ V o ^ + ^(<Ai)2] (22) 

dV j 
dz2 2z 

d>b 
dz dz1 [vWs + ( W V . ] 

dVe , 0 dt/6 1 d2 . 
Hf' + ^ d z ~ = - 4 d F 2 ( ^ o ) 

(23) 

(24) 

Auxiliary conditions to be imposed on the ^/s are 
obtained from equation 12, giving 

^ >- - 1 (z 
f0 > 1 (z 

^ ^ 0 ( z -
fi—>0 ( S -

0 

=) (i > D 

(25) 

(2(3) 

T h e above system of equations for the yVs can be 
solved successively from above to below. In this 
work we have extended the calculation up to i = 3 
for \pi and i = 6 for d^*/dz. T h e equations for 
d\pi/dz, di^s/dz and d^e/dz can be obtained with
out determining those for \pi: ^6 and ^6 because the 
constants for the first integrals of equations 22-24 
are zero.16 The results obtained are given below ,W 

</, = 
1 

lio = <I< (27) 

j2(4>)2 + 2z*'<l> + (4>')2 - 21 (2S) 

v£-2 = ^ 6 | 8 (* ) 3 + Z(IS - 4z2)<l>'(*)2 + 

(12 4z 2 ) (* ' ) 2 * - z (* ' ) 3 - 4z* ' -

( 8 _ I ^ „ 12V3 
7T / 

*(V3z) (29) 

Vi2 = — Y2 U(*) 3 + Gz*'(*)2 + 6(*')2* 

12V''3 

( * - ^ 3 ) 
$(V3z) J-

du = $ ' 

(30) 

(3D 

(16) This is readily .shown from boundary conditions 26 and the 
fact that the right-hand side^ of equations L'2-LM are even functions of 

(17) To simplify the notation iu these equations, 'l'(z) and <l>'(z) arc 
denoted simply by <f> and <%>', respectively, while *(- \ /^ z) 1& n o t a ' J 

breviated. 
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chAi 
dz - 2 » ' f ( 3 2z2)<E> - z* ' } (32) 

^p = 1 $ ' 3(21 - 24z2 + 4z4)(S)2 - z(10 - 4z 2 )* '* + 
QZ 8 ( 

(33) (1 + z2)(*')2 + 4z2 - (6 - ^ P ) 

d^3 

dz 12 
* ' -J(IS - 12z2)(*)2 -

12z*'* - 3(*')2 - ( ' 
12V3\ (34) 

t — k*'\^2 708z2 4- 216z4 - 16Z6) (*)3 -

z(234 - 144z2 + 24z4)*'(*)2 + (66 - 18z2 -

12z4)(*')2* - z(9 + 2z2)(*')3 ~ [(252 -

^288 144V3\ •*~\ * 4- z r^eo 
24z2 V3 ] * - * (12 - 72z2)* (\/3 z)Y 

dz 2 4 * (138 - 152z2 + 24z4)($)3 -

z(102 - 36z2)*'(*)2 - (15 - 18z2)(*')2* + 6z(*')3 -

2z2)* + (20 - ^ ~ ) 2*' + 

^ (12 +24z2)*(V3z)f (36) 

( » - * * ) < • 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

0.4 

^ ? = _ U ' j ( 6 - 4 z 2 ) ( * ) 3 

dz 4 ( 

Cs*'(*)2 - 3(*')2* + 4V3 *(V3z) (37) 

where 

*(z) = _2_ r» 
e~2! dz 

*'(z) = -7= e-

(38) 

(39) 

Equat ions for fa, fa= and 1/̂  have not been deter
mined because it was found tha t they are not re
quired in deriving subsequent equations. In Fig. 
1 are shown graphs18 of each d^</d2 [i = 0,1,...,6) 
as a function of z. Numerical tables of dfa/dz, ..., 
dfa/dz and fa, . . . ,fa in the range 0 ^z ^ 3.5 have 
been prepared a t intervals of Az = 0.1 and are 
available as a microfilm supplement to this article.19 

The Refractive Index Gradient Distribution.— 
The equation for the solution refractive index, n, 
as a function of concentration, C, may be written in 
the form of a Taylor series about C=C 

n(C) = n(C) + R(C 

where 

C)[I - G l ( C • 

aa(C -

R \dC) C = C 

C) +CIt(C- C)2 + 
C ) 3 + . . . ] (40) 

(41) 

(IS) Computed with the aid of the "Tables of Probability Func
tions," Vol. I, Federal Works Agency, Work Projects Administration 
(Sponsored by the National Bureau of Standards), 1941. Available 
from the Superintendent of Documents, Government Printing Office, 
Washington 25, D. C. 

(19) This supplementary table has been deposited as Document 
number 5060 with the ADI Auxiliary Publications Project, Photo-
duplication Service, Library of Congress, Washington 25, D. C. A 
copy may be secured by citing the Document number and by remit
ting 81.25 for photoprints, or Sl-25 for 35 mm. microfilm in advance 
by check or money order payable to: Chief, Photoduplication Service, 
Library of Congress. 
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Fig. 1.—Graphs of the functions in equations 31-37. The 
reduced concentration gradient curve for a free diffusion 
experiment in which D varies with C is obtained by dif
ferentiation of equations 13-17 with respect to z and substi
tution of these functions. 

and 
J _ / d 2 » \ 
21R KdOJc- C-ai = 3TR 

(d3n\ 
VdCVc = C 

etc. (42) 

I t should_be noted that R, at, a2, etc., are all func
tions of C. The values of these quantities may be 
determined from direct optical measurements or as 
auxiliary da ta from optical diffusion measurements. 
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Equat ion 40 may be written in terms of 4> by 
utilizing equation 6 

n(C) - n(C) + R ( ^ ) [* + «i ( ^ ) <t>2 + 

*(¥)'••+"•(¥)'*« + •••] ««) 
This relation may be then expanded in powers of 
AC using equations 13-17 

n(C) -^n(C) +R ( ^ ) [*o + ( ~ ) *i + 

(¥)**. + (¥)"*. + ...] <«» 
where 

(45) 
(46) 
(47) 

*: 

*l = krfx + C1(^0)
2 

*2 = A1V2 + fe^s + 2ai&î nfo + a2M
s 

= A1V4 + *iA2̂ 5 + *3̂ 6 + (Z1A1
2!^)2 + 2 ^ 0 ] + 

2aikiMo + 3a2k^iM2 + Cs(̂ o)4 (48) 
For a given value of C the refractive index grad

ient-distance curve is obtained by differentiating 
equation 44 with respect to x and utilizing equation 
10 
on 

c!*2 / A C V d * , 
dz \2 ) dz 

The Reduced Height-Area Ratio and Reduced 
Second Moment of the Refractive Index Gradient 
Curves.—The reduced height-area ratio, DA, of the 
refractive index gradient curve is defined by 

( » B — « A ) 2 

R /AC\ rd*o , / AC\ d*, 
2 V D & I \ 2 JLdz + \2 ) dz 

/Acy d*_2 /Acy cw 
V 2 / dz + \2 ) Ai 

+ 

+ (49) 

3DA = (50) 

Here na ~ n\ represents the refractive index dif
ference between the start ing solutions of concentra
tions CB and CA; using equation 40 it may be writ
ten in the form 

«H - «A = RAC {1 + (AC/2)2O4 + 0[(AC)4IJ (51) 

To obtain an expression for the height of the max
imum refractive index gradient, (pn/bx)m3iX, its 
position on the z coordinate must first be deter
mined by solving the equation 

Cl2W 

cis 
= (j (52) 

for z. I t is shown readily t ha t this value of z ap
proaches zero as AC becomes vanishingly small. 
Therefore, we may seek the desired root, z*, of 
equation 52 in the form of a power series in AC for 
moderately small values of AC. 

z* = (AC/2)zi + (AC/2) 2Z2 + (AC/2)»z, + (53) 

The coefficients z\, Zz, etc., are determined as fol
lows. First, all ^,-'s (i ^ 0) are expanded in powers 
of 2 and derivatives of the resulting expressions are 
subst i tuted in equation 49. The value of dra/dz, 
obtained from equation 49, is then inserted in equa
tion 52 to give an expression which, after substi tut
ing equation 53 for z, may be arranged in powers of 
AC/2. Each coefficient in t ha t series is equated to 
zero, giving a system of equations which may be 
solved successively for z\, z%, etc. This procedure 
yields 

(72-_12,r)a2&i - 9Oa1
8 + (96 - 87Oa1

2A1 - (24 + 
8V3 - 8ir/3)aiki - (12 - 6^3 + 2^a1A1

2 + 
(40 + 4V3 - 16jr/3)fei*2 - (6 + 3V3 -

3Tr)M +0[(AC)4]) (54) 

Longsworth's s tatement9 t h a t the two sources of 
skewness may partially compensate each other for 
some systems is supported by this relation; in fact, 
if ki = 2ai there is no first-order shift in the position 
of the maximum refractive index gradient from 
the initial boundary (x = 0). 

By inserting equation 54 in equation 49 we ob
tain 

fdn\ = -RAC 
1 + 

(AC) ' 
16TT 

P O [(AC)4] I 

(55) 

where 

P = 1Oa1
2 - (24 - 4Jr)O1̂ i + (6 + 3V3 - 3Tr)A1

2 + 
(4 - 4V3 + 4,r/3)A2 (56) 

Substitution of equations 51 and 55 into equation 
50 yields the desired relation 

2DA = D(C) {1 - -KT(AC)2 + 0[(AC)4]| (57) 

with K given by20 

K = - - j - [4Sa1
2 - (72 

J 4 7T 
127r)ai*i + (18 + 9V3 -

9Tr)A1
2 + (12 - 12V3 + 4TT)A2 - 127ra2] (58) 

Equat ion 57 indicates t ha t IDA for a given C varies 
linearly with (AC)2 for sufficiently small values of 
AC. The intercept a t AC = 0 and the slope of this 
straight line permit direct determination of D(C) 
and K. 

The reduced second moment, £>2m, of the refrac
tive index gradient curve is denned by 

1 / : S)m = ^- x2 dx 
OX 

(59) 
2t(nB — »A) 

I t will be recalled tha t x = 0 is defined as the posi 
tion of the initial boundary. Substitution of equa 
tions 49 and 51 then leads to 

SD21n = D(C) [1 - /.(AC)2 -I- 0[(AC)4]} (60) 

where21 

L 1 
12 

-2H1A1 ( O V S / T T K ] (61) 

Thus, for sufficiently small values of AC, D21H at a 
given C also varies linearly with (AC)2. The inter
cept a t AC = 0 and the slope_of this straight line 
permit direct evaluation of D(C) and L. 

Methods for Determining the Diffusion Coef
ficient versus Concentration Relationship.—On the 
basis of the theoretical relations obtained above we 
now propose two methods for determining the 
dependence of the diffusion coefficient on concen
tration for a given system from measurements of 
3DA and SD2m. 

a. First Method.—From equations 57 end GO 
it is seen t ha t the value of D corresponding to a 

(20) For purposes of computation, equation 58 is written in the form 

K = 0.63662a!2 - 0.45493B1A1 + 0.07048A1
2 + 

0.05016A2 - 0.5000Oa2 (5Sa) 
(21) This equation may also be written 

L = -0.166G7ffi£, - 0.08333£2 - 0.275G6a* (IiIa) 
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particular concentration, C = C', can be obtained 
by performing several experiments with different 
values of AC but with each value of C equal to C. 
A plot of either £>A or SD2m against (AC)2 should be a 
straight line, which may be extrapolated to (AC)2 

= 0 to obtain the value of D at C. Repetition of 
this procedure for several different values of C' 
yields the correct graph of D versus C without 
knowledge of the refractometric constants R, a,\, a2, 
etc. 

Because of the large number of experiments re
quired, this procedure might be very laborious. 
Provided that sufficiently small values are used for 
AC, approximate data for the dependence of D on C 
may be obtained by performing only one experi
ment at each of several mean concentrations, C. 
The resultant error is seen from equations 57 and 
60 to be of the order K(AC)2, or L(AC)2, compared 
with unity. I t should be remembered that for a 
constant value of AC this error may vary through
out the concentration range because in general 
both K and L depend on the value of C. 

b. Second Method.—In this method the de
sired D versus C relationship is calculated from 
equation 4, after using £>A and £>2m to evaluate its 
coefficients at a particular concentration. For this 
purpose some concentration, C', is selected in the 
central part of the concentration range of interest, 
and several experiments with C=C' but with 
different values of AC are performed. The values 
of S A and of SD2m from these experiments are 
plotted against (AC)2 in order to determine the 
limiting slopes, K and Z,_of equations 57 and 60. 
A separate value of D(C) is provided by each 
graph; the two results should be identical. Sub
stitution of these values for K and L into equations 
58 and 61 allows solution for ki and k2, provided 
ai and a2 are known from independent data. I t 
should be noted that all of these values correspond 
to concentration C'; in general they are all concen
tration dependent. Equation 51 may be of use to 
determine the value of a2, because it indicates that 
a plot of (WB — WA)/AC versus (AC/2)2 for experi
ments at a given mean concentration should have 
an intercept equal to R at AC = 0, and a limiting 
slope of Ra2. Substitution into equation 4 of the 
values of ki, k2 and D(C) thus determined at con
centration C' permits calculation of J? as a function 
of C throughout the range in which terms of order 
higher than ( C - C')2 may be neglected in com
parison with unity. 

Experimental 
All experiments were performed with the Gouy diffusi-

ometer described previously,22'23 using the 5460.7 A. mer
cury line isolated from a General Electric Co. A-H4 lamp 
with a Wratten 77A filter. The diffusion cell was of a fused 
silica Tiselius type,24 9 cm. in height, having an optical path, 
a, of 2.5062 cm. and an optical lever arm, b, of 306.86 cm. 
referred to the refractive index of air as unity. This cell 
was mounted25 so that when opening the cell its center 

(22) L. J. Gosting, E. M. Hanson, G. Kegeles and M. S. Morris, 
Rev. Sci. Instr., 20, 209 (1949). 

(23) P. J. Dunlop and L. J. Gosting, T H I S JOURNAL, 75, 5073 
(1953). 

(24) Obtained from Pyrocell Mfg. Co., 207 East 84th Street, New 
York 28, N. Y., and referred to in ref. 25 as cell number SD. 

(25) P. J. Dunlop and L. J. Gosting, THIS JOURNAL, 77, 5238 
(1955). 

section remained fixed relative to the cell holder and masks. 
To determine the small permanent displacement,26'27 S, of 
the reference fringes relative to fringes formed from light 
coming through the central part of the cell, five sets of spe
cial photographs were taken for this purpose in each experi
ment and the data averaged. Because these average 
values fell within a range of only 3 u, an over-all average 
value of S = + 7 M was applied to measured displacements 
of Gouy fringes from the reference pattern in every experi
ment to obtain the corrected Gouy fringe displacements, 
Yj (j denotes fringe minima 0, 1, 2, etc., counting upward 
along the Gouy pattern). A similar correction, S' = + 8 M, 
was measured and used in evaluating the Rayleigh fringe 
data to obtain the fractional part of the total number of 
fringes, 7m. 

The methods used to analyze the Gouy fringe data were 
essentially the same as those used previously26'28 when the 
concentration dependence of the diffusion coefficient was 
neglected. However, the former notation based on the 
variable z = x/{2y/I)t) is not rigorously applicable to the 
present experiments because the refractive index gradient 
curves are known to be appreciably skew9'10 Therefore 
we write the interference condition for fringe minima as29,30 

f(f,) = Zj/jr* (62) 

which defines the variable f; for a given experiment. As 
before, the reduced fringe displacement, e~tj2, correspond
ing to the reduced fringe number, f(f,-), was obtained from 
tables. For each photograph the ratio Yj/e'tf was then 
extrapolated29-31 to Z1-Vi = 0 to obtain the deflection, Ct, 
corresponding to the maximum refractive index gradient at 
that time. Although this procedure was shown to be valid 
for symmetrical refractive index gradient curves consisting 
of the sum of two or more Gaussian curves, it must at pres
ent be considered an empirical procedure when applied to 
these skew curves. That a reasonable extrapolation can 
be obtained is observed from Fig. 2, which shows this 
extrapolation for one photograph from each of three experi
ments with different concentration differences, AC, across 
the initial boundary. These photographs were selected to 
give an approximately constant value of the ratio CtZ(Jm)2/'] 
equation 31 of reference 29 then predicts equal slopes if 
these non-zero slopes had arisen from the presence of an im
purity in the »-butanol, rather than from the concentration 
dependences of D and of dn/d C. 

The reduced height-area ratio, SDA. for each experiment 
was calculated using equation 50 written in the form25 

in which X is the wave length of the light in air, 5460.7 A. 
To correct for imperfections in the initial boundaries pro
duced by the single-prong capillary sharpening technique, 
7 or 8 Gouy fringe photographs were taken during the 
course of each experiment, and the measured values of 2DA 
obtained from these photographs were extrapolated to 1/t 
= 0.32 This extrapolation gave satisfactory straight lines 
for experiments with the smaller values of AC, but difficulty 
was encountered when AC was large. Long times then had 
to elapse before all fringes were in view so photographs 
could be taken, and the proper slopes of lines for extrapolat
ing these closely grouped points were not obvious from the 
data . However, since the slopes for experiments with AC 
= —0.2 and AC = —0.3 corresponded to starting times of 
about 14 s e c , this figure was arbitrarily used to guide the 
extrapolations for the other experiments. All other reason
able slopes would have yielded values of SDA within 0 . 1 % 
of the reported values. 

No temperature correction of the observed values of 3DA 
was required because the constant temperature water bath 
surrounding the diffusion cell was maintained within 0.00s° 
of 25°. 

(26) L. J. Gosting and M. S. Morris, ibid., 71, 1998 (1949). 
(27) L. J. Gosting, ibid., 72, 4418 (1950). 
(28) G. Kegeles and L. J. Gosting, ibid., 69, 2516 (1947). 
(29) D. F. Akeley and L. J. Gosting, ibid., 75, 5685 (1953). 
(30) Values of Zj = (J + »/« + . . .) were obtained from Table I of 

ref. 26. 
(31) Values of Zj'/' were obtained from Table III of ref. 29. 
(32) L. G. Longswortu, THIS JOURNAL, 69, 2510 (1947). 
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Fig. 2.—Representative extrapolations used for obtaining 
C1. I t is seen that Y1-/e"^'2 versus Z?/z is linear within ex
perimental error, even though each refractive index gradient 
curve was known to be appreciably skewed. 

Materials.—Approximately two liters of a commercially 
available sample33 of w-butanol was distilled using a Older-
shaw glass bubble plate column having 30 (actual) plates 
and equipped with an automatic liquid-dividing still-head. 
The first 750 ml. of distillate was discarded and the next 500 
ml. of w-butanol was kept for the experiments. During 
collection of this sample the temperature at the top of the 
still-head was constant within ±0 .0 i ° . The density of 
this material at 25° was found to be 0.80570 g./ml.34 

Doubly distilled water which had been saturated with air 
at room temperature was used as solvent. 

Solutions.—All solutions were made up by weight. In 
an at tempt to minimize difficulties due to evaporation, a 
stock solution containing 6.0023% by weight of »-butanol 
•in vacuo (0.800O4 molar) was prepared first using conditions 
designed to minimize exposure of the materials to the atmos
phere. Density measurements on this solution yielded a 
value of 0.98799 g./ml. Other solutions were then prepared 
by adding the proper amount of solvent to weighed portions 
of this stock. The calculated weight % of each solution 
was converted to moles per liter by using the 25° density 
data of Lyons and Sandquist11 and a value of 74.124 for the 
molecular weight of w-butanol. 

Results and Discussion 

D a t a for five experiments designed to test the 
above theory are presented in Table I-1 I t will be 
noted tha t the mean concentration, C = (CA + 
C B ) / 2 , of w-butanol was made the same in each ex
periment, while the concentration difference, AC = 
CB — CA, was varied. Here AC is negative be
cause, to maintain gravitat ional stability, the upper 
solution, A, was made more concentrated in n-
butanol than the lower solution, B . Column 1 in
dicates the order in which the experiments were 
performed, while column 5 lists the s tar t ing t ime 

(33) "Baker Analyzed" Reagent. J. T. Baker Chemical Co., Phillips-
I)HTK, N. J. 

(34) Values of 0.80572 and 0.8051,7 were obtained for d2h by G. 
.!ones and S. M. Christian, Tins JOURNAL, 61, 82 (1930), and by A. S. 
ISnnucs and M. J. P. Jjngart. In,]. Eiig. Chem., 35, 255 (1943). re
spectively. 

TABLE 1 

DEPENDENCE OF THE REDUCED H E I G H T - A R E A RATIO, JOA, 
ON AC FOR THE SYSTEM » - B T J T A N O L - W A T E R 

T = 25.000° 
1 

ixp, 
no. 
IV 

i 

in 
V 
II 

2 
AC, 

moles/1. 

- 0 . 2 0 0 0 
- .3000 
- .4,501 
- .0,500 
- .8000 

3 
C, 

moles/1. 

0.4000 
.4000 
. 4000 
. 4000 
. 4000 

4 

j:u 

72.17 
108.70 
162.99 
234.64 
288.90 

5 
Al. 

see. 

14.4 
14.0 

(Hf 
(14) 
(14) 

fi 
1)A X 10 
cm. Vsec 

0.8432 
.8414 
.8391 
.8331 
. 8268 

u Values in parentheses were assumed and used to guide 
the extrapolation of measured reduced height-area ratios 
to infinite time ( 1 / / = 0). 

corrections,32 At, associated with extrapolation of 
the measured reduced height-area ratios to infinite 
t ime (i.e., to \lt = 0). These extrapolated values 
of ©A are presented in column 6, and it is seen t ha t 
they vary appreciably with AC. T h a t this change 
in SDA is linear in (AC)2, as predicted by equation 
57, is shown in Fig. 3 ; from the slope of the solid 
line a value of 0 . 0 3 I T is obtained for K. 

0.84C 

a 
D.830 1 

0 0.6 QE 0.4 

(AC)". 
Fig. 3.—The linear dependence of the reduced height-

area ratio, 2DA, on (AC)2 for re-butanol in water when C = 
0.4 molar. The straight line shown was drawn to represent 
best the experimental points and its slope was used to 
evaluate K, equations 57 and 58. A value of 0.844? X 10 ~5 

cm.Vsec. is obtained for D from the intercept at (AC)2 = 0. 

According to equations 57 and 5<S, K is directly 
related to the coefficients ai, a?, k\ and ki in equa
tions 4 and 40. By fitting the da ta of Lyons and 
Sandquist1 1 to equations 4 and 40s5 written with C 
= 0.4, we obtain the values k\ = -0.30O5 , k-i 
= 0.023 and a, = 0.042. The value so calculated 
for 02 is less reliable; depending on the particular 
curve drawn through the experimental points, 
values ranging from —0.05 to —0.03 may be ob-

(35) For this calculation equation 40 was rewritten in the form 

Are 

AC 
3a,(C* - C)- -i- . . .] (40a) 

where An = ^B — "A, C — 0.4 molar and C* denotes the several 
values of (CA -f C B ) / 2 corresponding to the measured values of 
AM/AC in their different experiments. It will be recalled that in 
Lyons and Sandquist's experiments AC was held nearly constant while 
(CA -f C B ) / 2 was varied over a wide range. The term Raz(AC/2)2 

was so small that it could be neglected in tilting equation 10a to their 
experimental points near C = Ol 

Ra- (¥)' -« 1 + 2a,(C* - C) 
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tained.36 Since for this system the term contain
ing a2 in equation 58 (or 58a) contributes nearly 
half the value of K, this uncertainty in <z2 imposes a 
serious limitation on checking the validity of equa
tion 57. A partial confirmation is obtained, how
ever, subject to the assumption of a negligible vol
ume change on mixing, by using the above values 
of ki, &2, ffi and K to calculate a value for <z2. In 
this way we obtain a2 = —0.027, which is consist
ent with the range of a2 obtained from Lyons and 
Sandquist's refractometric data. It is hoped that 
a more exact test of equation 57 will eventually be 
possible, either by obtaining a more accurate meas
urement of Oi at C = 0.4 for this sytem or by 
studying a system for which a2 is so small that its 
contribution to K is negligible. 

Figure 3 illustrates part of the "first method," 
described at the end of the theoretical section, for 
obtaining the D versus C relationship. The inter
cept at (AC)2 = 0 yields the value D = 0.8442 X 
10 -5 cm.2/sec. for C = C = 0.4. From the slope 
of these data it is seen that for this system with C 
= 0.4 the values of 25 A differ from the value of D 
by less than 0.12% provided that |ACj ^ 0.2. If 
I AC] ^ 0.3, £>A differs from D by about 0.29%. 
In order to use confidently the approximate form 
of the "first method," whereby the D versus C 
curve is obtained by using only one experiment with 
a small AC at each value of C, some knowledge of 
this difference between 33A and D is required. 

Neither the "second method" for obtaining the 
D versus C relationship, nor the alternative part 
of the "first method" utilizing S)2m, could be tested 
with the data presented above. These limitations 
exist because no method has been found for evalu
ating the reduced second moments, SD2m, from Gouy 
fringe data for skewed refractive index gradient 
curves; the method37 for obtaining 2)2m from 3DA 
and the fringe deviation graph is applicable only 
to symmetrical refractive index gradient curves. 

The remaining data of interest from the experi
ments reported in Table I are contained in the 
fringe deviation graphs,26,29 shown in Fig. 4. Here 
the reduced fringe deviations, Qj == e~f,-2 — Y3/Ct, 
contain all of the information provided by the 
Gouy fringes about deviations ot the refractive in
dex gradient curves from the Gaussian shape. 
They are plotted against the reduced fringe num
bers, fQv), equation 62. To simplify the notation 
the subscripts, j , are now omitted. The dots at a 
given value of f Q") represent values of Q for a given 
fringe at different times, while each cross indicates 
the arithmetic average of these values. I t is seen 
that the fringe deviations are largest for the largest 
value of AC and diminish as AC diminishes until 
they become nearly zero for AC = —0.3 and AC 
= —0.2. These fringe deviation graphs would 
have been identical had they arisen from an im
purity in the w-butanol.29 Because Longsworth9 

and Creeth10 have demonstrated with their Ray-

(36) The value of 02 is extremely sensitive to small errors in the 
values for An/AC. I t was hoped that a better value of <22 could be 
obtained by plotting our data for An/AC (obtained at C = 0.4) versus 
(AC)2 and using equation 51 to evaluate at from the slope. However, 
perhaps because of evaporation while filling the cell, the data showed 
too much scatter to yield a more reliable result. 

(37) See equation 47 of ref. 25 or equation 39 of ref. 29. 
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Fig. 4.—Graphs of the Gouy fringe deviations for experi

ments reported in Table I. 

leigh fringe measurements that w-butanol-water 
solutions with AC — —0.2 exhibit quite skew re
fractive index gradient curves, it is evident from 
the data in Fig. 4 that the Gouy fringes are quite 
insensitive to such skewness. Further studies are 
required to determine whether the fringe devia
tions for the larger values of AC are due to skewness 
or to the second order symmetrical deviations rep
resented by dvVdz and dfa/6z, equations 33 and 34. 
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In solvents of intermediate dielectric constant 
where the formation of short-range ion pairs is not 
negligible, Bjerrum's approach to the problem of 
ionic activity coefficients2 is particularly useful. 
In this approach, the troublesome short-range in-
terionic effects need not be calculated explicitly; 
they are accounted for by the device of an equilib
rium (1), between the short-range ion pairs C + A -

and the long-range pairs or free ions. Thus, if c is 
C+A- = C+ + A" (1) 

the formal concentration and y the molar activity 
coefficient of the electrolyte, and if a is the fraction 
and y' the activity coefficient of the free ions, y is 
given by equation 2 and a by equation 3. 

y = ay' (2) 
a\y')H/{\ - a.) = K (3) 

Since in equation 2, the factor a allows for the 
short-range interactions, the calculation of y' in
volves long-range interactions only. K in equation 
3 is the ion-pair dissociation constant. 

In a recent paper from this Laboratory3 it was 
shown that K may be identical with the ion-pair 
dissociation constant deduced from conductivity 
data if the equations for the equivalent conductance 
A and for y' are given to a better approximation 
than that of the limiting laws. For uni-univalent 
electrolytes equation 4 was derived for y' from a 
plausible model for the charging process of a free 
ion in media where the ionic diameter is small com
pared to the Bjerrum distance q = e2/2DkT. 

In this equation, e is the unit of ionic charge, D the 
dielectric constant, k Boltzmann's constant, and T 

(1) This work was supported by the National Science Foundation. 
(2) N. Bjerrum, KgI. Danske Vidcnskab. Selskab, Math-fys. Medd., 

7, No. 9 (1926). 
(3) H. P. Marshall and K. Grunwald, J. Chem. Phys., 21, 2143 

(1953). 

plied by the Wisconsin Alumni Research Founda
tion. 
MADISON, WISCONSIN 

the absolute temperature. 1/«, the effective thick
ness of the ionic atmosphere, is defined as usual2'4 

by equation 5, where fi is the ionic strength of the 
free ions and iVis Avogadro's number. 

K1 = 8Tt1NnZlOOODkT (5) 

For practical calculations equation 4 reduces to the 
form 4a, where S, the Debve-Hiickel limiting 
slope, is equal to 1.825 X 10«/(DT) .'/> 

- l o g / = 0.8686 11 - [log(l + 2.303SVZM)IASV^) 
(4a) 

We now report potentiometric data, accurate to 
0.05 mv., for solutions of HCl and its mixtures 
with NaCl and KCl in 70.00 wt. % dioxane-30.00 
wt. % water at concentrations as low as 0.0001 M. 
(This concentration is low enough to permit an 
unambiguous evaluation of the standard potential 
and hence of y.) In this solvent (D = 19.07 at 
25°) the formation of ion pairs is considerable even 
at low concentrations, and the data furnish a good 
basis for the testing of equations 2, 3 and 4a. Using 
the conductometric value of K for hydrochloric 
acid,3 the predicted values of y agree with observa
tion within 0.06% up to 0.0025 M and are in error 
by no more than 2.6% at 0.01 M. For NaCl and 
KCl, conductometric K values are not available, 
but application of equations 2, 3 and 4 to the data 
for HCl-NaCl and HCl-KCl mixtures at ionic-
strengths below 0.002 M leads to highly precise 
values of K over several-fold variations in the sol
ute concentrations. One may conclude, therefore, 
that the potentiometric method, in conjunction 
with equations 2, 3 and 4a, is well-suited to the pre
cise determination of ion-pair dissociation con
stants. 

E.M.F. Measurements and Electrode Behavior. 
—The cell used in this work is shown in equation 6, 

(4) H. S. Harned and B. B. Owen, "The Physical Chemistry of 
Electrolytic Solutions," Reinhold Publishing Corp., New York, 1950. 
second edition, p. 32. 
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In the calculation of ion-pair dissociation constants K from potentiometric data the difficult par t is the estimation of the 
activity coefficients, y', of the free ions. For solvents of intermediate dielectric constant, Marshall and Grunwald derived 
the equation, - l o g y' = 0.8686 j 1 - [log(l + 2.303 SV^)]/SVJi], (where 5 is the Debye-Hiickel limiting slope and ^ the 
free ion ionic strength). The validity of this equation is now demonstrated by means of accurate potentiometric data 
for concentrations ranging from 8 X 10 ~6 Af up to 0.0025 M where interionic effects of higher order than pairwise become 
significant. E.m.f. data accurate to 0.05 mv. even at the lowest concentrations were obtained by the following experimental 
techniques. The measuring cell was: glass electrode/solution X/AgCl-Ag, it having been shown that the e.m.f. of the 
cell: Pt-H2 /solution X/glass electrode, is constant for our solutions. The Ag-AgCl electrode was of the silver mirror-
electrolytic type, equilibrated in 10-15 minutes and was free from aging effects. The ionic strengths were low enough so 
that different methods of extrapolation to infinite dilution led to almost identical values for the standard e.m.f. Activity 
coefficients for HCl were predicted without adjustable constants by means of the equation of Marshall and Grunwald and 
of a conductometric value of K, and agreed to ± 0 . 0 6 % with the measured values. The same approach led to precise values 
of 10IK for NaCl (5.35 ± 0.07) and KCl (2.35 ± 0.11). 


